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When dividing a large system into a subsystem and a bath, one sometimes needs to include multiple nuclear
coordinates in the subsystem in order to treat the remaining bath modes by Markovian relaxation theory
(which assumes fast bath relaxation). This paper examines the effects of Redfield relaxation on the time-
resolved fluorescence signal and on the loss of energy from a three-mode system. Simulations are compared
for system coordinates coupled to the same bath mode and to independent bath modes, for coupling linear
and quadratic in the system coordinates, and for different temperatures. To make these comparisons meaningful,
a criterion is proposed for normalization of the coupling strengths in the different cases. The fluorescence
Stokes shift and the system energy are shown to be sensitive to different relaxation processes. The coupling
of multiple system coordinates to the same bath mode results in a wide range of relaxation rates. Simple
descriptions in terms of individual population relaxation and coherence dephasing rates are inadequate due to
sequential processes and to coupling between populations and coherences. These results have implications
not only for Redfield treatments but also for other relaxation theories such as the Brownian oscillator model.

I. Introduction states and a generalized collective nuclear coordinate in an

Recent progress in the capability of femtosecond laser Sourceselec'[ron-transfer reaction. While the most obvious decomposi-

has fostered widespread investigation of chemical dynamics intIon recognizes the directly measured or e?<C|ted degrees of
freedom as the system and relegates everything else to the bath,

condensed phases using a variety of time-resolved nonlinear h i bet A d bath K better i
optical measurements. In the most general (and vaguest) termsOt €l Separations between system and bath may work better in
ome cases. In particular, solvent modes that are strongly

these experiments optically excite a chromophore and measur led to the k di h be included in th
the influence of interactions between the chromophore and aggst%re}] to the key coordinates may have to be included in the

solvent on its subsequent evolution. The evolution can include
both oscillatory coherent nuclear motion and incoherent popula- Redfield theory? is one such approach to incorporating
tion decay. Electron transfer and energy transfer also can causéelaxation in a quantum dynamics calculation. In Redfield
vibrational coherences that are observable by ultrafast optical relaxation, the system evolves in contact with a bath that starts
measurements. and stays in thermal equilibrium; the bath is unperturbed by
If the temperature is sufficiently high compared to the relevant the presence of the system and carries no memory of past states
frequencies of nuclear motion and if the Bet@ppenheimer of the system. Often, however, an optically excited chro-
approximation holds, classical nonequilibrium molecular dy- mophore launches nonequilibrium dynamics in the surrounding
namics simulations can model the time evolution of the large medium. For example, in classical simulations of the cage effect
numbers of solvent molecules responding to and influencing in geminate recombination (in which the atoms in a photoexcited
the excited chromophore. But often, some important features solute begin to dissociate impulsively but then collide with the
of the motion must be described quantum mechanically. surrounding solvent molecules) shock waves have been seen
Unfortunately, the rapid rise in the required number of basis in the host mediun.
functions with increasing degrees of freedom precludes incor- | principle, bath dynamics can be incorporated by going
poration of all solvent motions in a fully quantal treatment. Thus, beyond the Markovian (memoryless) assumptions of Redfield
approximate relaxation methods have been appropriated fromtheory. The theory becomes difficult in practice, but progress
magnetic resonance, quantum optics, and other areas of spechag peen made along this line for some well-defined model
troscopy and dynam_lcs. In this approach, a small numbe_r of hroblemsd—9 Mixed quantum-classical methods have been
modes are treated rigorously (the system) and the remamderemp,Oyed as well, including some physically motivated but
are subsumed into a less carefully described bath. phenomenological approaches to the inclusion of quantum
The system typically comprises a bare minimum of important .\« hanical coherence loks12 Here, we explore a less

degrees of freedom, such as the optically coupled electronic demanding alternative approach: we retain the Markovian

levels subject to a resonant excitation, or the donor and acceptolgy sture of Redfield theory and simply enlarge the “system”

incl multiple nuclear r f fr m th I
TSome of this work was performed while the authors were at the to include multiple nuclear degrees of freedom that couple
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As a simple nonlinear optical measurement in which to  The rest of the paper is laid out as follows. We first briefly
explore this approach, we choose the time-dependent Stokeglescribe our application of Redfield relaxation theory, the
shift of a “solvated” chromophore. Specifically, we simulate coupling normalization criterion, the simulated optical signal,
the peak frequency of the time-dependent fluorescence spectrunand the model systemwpealt) is then computed for different
following short-pulse excitationwpealt). Under favorable system-bath coupling schemes. Results with correlated and
circumstances, this quantity reflects the time-dependent averageincorrelated coupling are compared. In the context of correlated
electronic transition energiE(t), the expectation value of the  coupling only, quadratic and linear coupling are compared, the
potential difference between ground and excited electronic stateseffects of linear-quadratic crossterms are examined, and the
as the nuclear distribution initially corresponding to ground- temperature dependence is discussed. We conclude with a brief
state equilibrium evolves in the excited electronic state. As €xtension of our discussion to the useful but phenomenological
time-resolved fluorescence is (in theory) one of the simplest Brownian oscillator model and with some suggestions for future
nonlinear optical measurements and since excitation of the solutedevelopments.
molecule induces nonequilibrium motion of nearby solvent
molecules, the Stokes shift forms an ideal testing ground for !l- Méthods and Model
our implementation of relaxation theory. ILA. Redfield Theory with a Simple Bath. Quantum

In this study, our system is a three-mode model whose dynamics simulations at present are possible with only a few
simulated time-dependent fluorescence spectra have been exdegrees of freedom (except in some harmonic models). While
haustively investigatet® The model system, a polar solute few-mode models may be sufficient to simulate the initial
interacting with several polar solvent molecules, is here motions of nearby solvent molecules in response to the electronic
augmented with a surrounding medium that induces “vibra- excitation of a chromophore, small systems do not allow
tional” relaxation and dephasing in the system coordinates (the effective dissipation of vibrational energy away from the
system coordinates are in fact librations). As our purpose is chromophore, dephasing of coherent nuclear motion, or other
S|mp|y to make a pre"minary test of relaxation theory in a effects of real baths. We will use Redfield theb?”%to include
multimode system and to explore different systepath cou- additional bath coordinates that are weakly coupled to the
pling schemes, we characterize the bath in only the most cursorySystem. Under appropriate conditions, this approach can

terms and do not attempt to identify our model with any specific Simulate relaxation of the small system, including both decay
bulk polar solutiort of vibrational coherences (dephasing) and vibrational population

relaxationt® in a realistic manner.

The simulated signals shown below are oscillatory and do We partition the full vibronic Hamiltonian into three parts:

not look much like the overdamped solvation Stokes shift
experimental signals. Indeed, as a weak coupling theory, Ay = F, + A, + V(r,0) 1)
Redfield relaxation is only good for underdamped motion.

However, small systems with Redfield relaxation similar to the g system Hami|toniaﬁ|3, a bath Hami|toniar|{-|b’ and a coupling
one simulated here could model related experiments, such as;f/(r,q) that depends on both the system coordinat@sid a

the pump-probe spectroscopy of polyatomic chromophores in subset of bath coordinates coupled to the systgin (The
solution, of solutions with local solvent modes including system includes key collective solvent coordinates and would
cryogenic rare gas matrixes, and of chromophores in biological include Franck-Condon active modes of the chromophore
systems. In addition, solvation Stokes shifts and other over- (fixed in our model).

damped signals could be due to “unphasing” of several modes, The derivation of Redfield theory relies on the following
each of which is underdamped. With a few more system assumptions.

coordinates (and somewhat faster computers), one could simu- (1) The system and bath density operators are initially
late such overdamped signals using Redfield relaxation. separablepioi(0) = ps(0) pp. The density operator prepared by

We address several issues of general importance in thethe excitation pulse will be separable if the systepath
application of relaxation theory to nonlinear optical signals. Can coupling is negligible at equilibrium in the ground electronic.
the probed quantity (in this casepeayt)) distinguish between state and in thg propagation during the pulse gnd if the bath is
different forms of systembath coupling, e.g., coupling that is ~ affected by neither the pulse nor the electronic state. -
linear versus quadratic in the system coordinates and correlated (2) The coupling between the system and bath during the
versus uncorrelated among different system coordinates? Whafropagation is weak. In addition, the bath average of the
is the relative influence on the signal of vibrational energy COUPIiNG is assumed to be zefr[ppV(r,q)] = V(r,q)0= 0,

relaxation and vibrational dephasing? Is the fluorescence Stoked©r any value of the system coordinatethe system Hamiltonian

shift an accurate probe of system energy relaxation? Are therelS thenHs = Fot — HylJ _ . .
relaxation phenomena specific to multimode systems? Do (3) Decay of the relevant bath correlation functions is rapid

“nonsecular” relaxation processes, which couple system Olensitycompared to the relaxation rates of the system (to enable a

matrix elements that oscillate at different frequencies, affect the Markovian approxmatlon). . I
Under the first two assumptions the Hamiltonian for a system

signal? . . . ; . .
. . L . . . that evolves adiabatically in the excited electronic state is
An interesting technical issue arises in the comparison of
different forms of the systembath coupling. In an attempt to |3|tot = |gH @] + |elH (& + H, + |eV(r.q)@  (2)

determine whether different systerhath couplings give rise

to sensibly different optical signals, we must not misconstrue where ‘g" and “€” refer to the ground and excited electronic
sensitivity to changes in coupling strength as an indication of states. Hq is used only for the initial density matrix following
sensitivity to different forms of systerbath interaction. To  the excitation pulse and for the fluorescence, as the fluorescence
prevent this, we devise a normalization criterion whereby signal reflects dynamics only in the excited electronic state.
different forms of interaction may be said to have more-or-less  The partition of a bulk solution into system and bath may
equivalent interaction strengths. not be simple. By assumption, the bath potential is not changed
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with

Gy = Z (GO (6)

(03, = [, dre ™ F ()F,0 (7)

Here h.c. is the Hermitian conjugate afiel(r)Fpdis a bath
correlation function (with both equilibrium and evolution
determined byHp). The relevant bath dynamics are specified
by (07). evaluated at the system Bohr frequencige As
Pollard and Friesner have explain€dhere is a computational
advantage to evaluating(t) using eq 5 rather than eq 3. While
the latter requires storage and multiplication of MfeRedfield
tensor elements (whefis the number of system eigenstates),
the former entails storing and multiplying oy x N matrixes,
which scales ad3.18

Bath coordinate The systemrbath coupling can be put in the form of eq 4 by
Figure 1. Illustration of motion induced in “bath” modes by excitation ~€xpanding the coupling potential in terms of the displacements
of the system. Contour plots are shown of a ground electronic state Of the system and bath coordinates from an appropriate reference
potential energy surface with one system and one bath mode and of aconfiguration (¢,0) (the reference values of the bath coordinates
rotated and displaced excited-state potential. The heavier line showsg, are arbitrarily set to zerdf. To keep the displacements small
mg C'f‘osusr'%a'sttgscf%éﬁ tﬂetﬁéc'tgfeﬁ?aﬁ S;";‘é“g% altatzledn(])lrr:llmil:]mﬂ?; at long times, the reference configuration should be near the
systgm mode, métion is i%ducedpin the bath modepas well. d average coordinates in the unc_Ol_JpIed HamiltonidnandH. .

We choose . to be the lowest minimum of the system potential

or displaced by the electronic state (although small changes(Slightly different from the average in our anharmonic system)
could be incorporated in the systetinath coupling). However, SO that the expansion does not depend on the temperature. For
the bath still can move following optical excitation; as illustrated @ harmonic system, pure dephasing enters only with coupling
in Figure 1, after the electronic state change displaces the systenfluadratic in the system coordinates; thus, to include appropriate
potential, coupling of the bath to the system nuclear coordinatesdephasing for a system that is close to harmonic, we include
displaces the bath equilibrium and causes bath motion. For thecoupling terms linear in the bath coordinates and up to quadratic
Markovian approximation to hold, the induced bath motion must in the system coordinates
be damped faster than the system relaxes. The assumptions of

System coordinate

Redfield theory could be met by including in the subsystem a 32V(I’e, 0)

sufficiently large buffer of solvent coordinates between the V(r,q) =~ Z z —(r - re,i) +

excited chromophore and the bath, thus ensuring little distur- T |G 0r; 90,

bance of the bath. There is no guarantee, however, that such a 1 33\/(re, 0)

subsystem could be defined small enough to enable rigorous -5 ——, - rei)(rj — rej) a, (8)
treatment of its internal dynamics. In particular, we do not 2 4 0r; 9r; 99, ' '

attempt to validate the assumptions for a small system in the

polar solutions used in Stokes shift experiments. But these |n this approximation, the coupling operators in eq 4 are

assumptions make feasible the simulation of the dissipative specified;F, = g, and G, is equal to the quantity in square

dynamics of a multimode system. brackets in eq 8. A§VO= 0, terms zeroth order in the bath
Under these conditions the effects of coupling to a bath on modes are incorporated H.. We assume there are no terms

Fhe evolution of.the reduced. system qensity matrix can be zeroth order in the system coordinates; such terms would

incorporated (using perturbation or projection operator tech- incorporate differences between the bath potentials in the excited

nigues) in the Redfield relaxation tens&ik im, and ground electronic states (sindg is the same in the two
) states, any difference must be included in the coupling).
Pit) = —ioy (L) + Z RicimPim(t) 3 Coupling to many bath molecules can be included in relatively
m

few explicit coordinates ifg, (and possiblyr;) represent
collective motions of many molecules.

In principle, the derivatives of the coupling potential in eq 8
could be calculated from an analytical potential, and the bath
correlation functions of eq 7 could be simulated using classical
molecular dynamic8-2tor derived from experimer Instead,
we will posit a bath that allows realistic dissipation while
inherently obeying the assumptions of Redfield theory. The
V(r,a) = z GA(r)F4(a) (4) coupling derivatives are treated as parameters. We make some

a dramatic assumptions to simplify the relevant bath dynamics,
being careful to preserve detailed balaht® We neglect
entirely the imaginary parts of*, allowing the correlation

1 function in eq 7 to be symmetrized. The bath coordinates are
Pi(t) = —iwou(t) +— z {[G;rp(t), GJ] +h.c}y (5) assumed to be linearly independefify(t)gpl0= 0 for a = b
h? G (but one bath coordinate may be coupled to multiple system

wherej, k, I, andm indicate nuclear eigenstates of the system,
p is the system density matrixj is the Bohr frequencye( —
e/h, and Ay is the elemenij]|A |kCof operator A. Pollard and
Friesnet’” have shown that for systentath coupling written
as a sum of products of system and bath operators,

the equations of motion can be written
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coordinates; see section Il.B). Extending the Redfield ap- Thus, the final expression for the hypothetical rate of energy
proximation of fast relaxation of the bath, the symmetrized loss to the bath in the absence of feedback to the system is
correlation functions are assumed to decay quickly compared

to the nuclear Bohr frequencies of the system. If the fast decay . ZTamﬁD ﬁhwkj )
of the correlation functions is exponential, (Lf{t)q. + Epath= 2 z — | 0yl (O (Gyl™  (13)
Gle(t) = [G’Dexp(|tl/za), then = Ao\ 2

k>j

Note that in this expression the bath absorbs energy only

under the influence of system coherences, as the Bohr frequency
) 1 of the populations,wj, is zero. For example, incoherent
6a,tztamamw 9) distributions among eigenstates will dissipate no energy in this
1+ normalization calculation because they do not move in an

isolated system. Thus, the normalization reflects absorption by
. . the bath only of energy from coherent motion in the system,
detailed b""_'a%”ce- The prgfactoramiﬂglso IS tre_ated as a  while the decay of the system energy in actual simulations also
parameter; it is redunda.n.twr[h the coupling dgrlvatlves gnd_ needinciudes incoherent population relaxation of a nonthermal
not be separately specified. Note from the first equality in €q yisiribution.
9 that with these assumption&*ty),, is closely related to the
spectral density of the systerbath coupling.

1 T |
(O = 6a,breghw S dre 5 B(7), + 0 0:(7)

(8 = 1kyT). The frequency dependence éf ), maintains

II.C. Calculation of the Fluorescence Signal. The observ-
li7ati ¢ Diff h i able that will be simulated is the peak frequency of the time-
II.B. Normalization of Different System—Bath Couplings. dependent fluorescence spectrum following excitation by a short

:;O I]alrly ﬁompare the effectz of (jlfferenlt. W%yi of COUp:I'ng the ¢ ulse as observed by fluorescence upconversion. We previously
at _to t e_system, we need to _nhormalize the overa rate_ O derived an expression for this observable and examined it for
dissipation in each case. Our criterion will be the rate at which . 1 0del systeri®25 here we just give the expression

energy is absorbed by the bath under the influence of the (equivalent to egs B1B3, the “observed” spectrum, in ref 13).

evolving system. Specifically, two forms of coupling to a bath ¢ jnitial density matrix(0) is a piece of the ground electronic
are considered normalized if the associated baths absorb €Ner9%tate equilibrium density matrix promoted to the excited state
at equal rates from the system when the system evolves wnhoutby a short pulse:

feedback from the bath. The rates are averaged over a time
that is long compared to the system periods. In this hypothetical - T

situation, considered solely for the purpose of normalization, PO = PLoccTordled (CercTerd (14)
the system acts as an oscillating force on the bath due to itSWherepeq = exp(—pHy)/Trlexp(—BHgy)], and

coherent motion. The force that acts on the bath coordipate
= F, is taken to be-[G4(t)[{, the time-dependent average of
—G4(r) under the evolving distribution of the isolated system.
When expanded in the system eigenstai@g(t)[d is a sum of
discrete-frequency components

i o
P(Q, 1) = — T S, drexp(-772ry) x
P
expli(H, — A t/A] exp(—iH t/h) (15)

. is the pulse propagator for electronic excitation by an optical
(G, = Trlexp(~iHUA)o(0) exp{HLR)G,(r)] = pulse with center frequenc®, and duratiorr,. After the pulse
Z ij(o)(G a)jk exp(—iwkjt) (10) action, the density matrix is propagated in the excited state as
B described in section 1l.A. Assuming that the excitation pulse
and upconversion pulse are separated in time, the time-dependent
The initial density operatop(0), is set identical to the thermal  fluorescence spectrum observed by upconversion is a window
equilibrium density operator (see section 1I.C) transferred on the propagated density matrix component
unchanged to the excited electronic state so that the normalized
coupling will not depend on the laser pulses. F(w, ty) = Tr[P(w, Tup)F’T(w, Tup) P(ty)] (16)
Assuming that none of the Bohr frequencies are degenerate,
the time_averaged rate Of energy absorption into independentThiS eXpI’eSSion iS eqUIvalent to the Stimu|ated-emiSSi0n com-

bath coordinates, is?* ponent of a pumpprobe signal under similar conditioh$The
peak fluorescence frequency at a given timgea(td), can be
= T N[ 2 found from the maximum of the sign&(w, tq) with respect to

Eoan ;w]kaa (@310 (0) (Gayd (11) frequencyw (noting thatw occurs only in the upconversion

pulse propagators).

In calculating the time-resolved fluorescence spectR{m,
tg) for a system and bath, we include relaxation via the Redfield
tensor during the evolution in the excited state between the
be valid), the fluctuatiordissipation theorem shows that temporal centers ofthg excitatioq and upconversion pulses, but
0" (w) is proportional to the real part 08t ag)—.2* and hence we neglect relaxation in calculating the pulse propagators (as

can be evaluated using the same assumptions (listed above eyl @s neglecting effects of pulse overl&p)All simulations
9): in this paper use an excitation pulse length of 10 fs and an

upconversion pulse length of 20 fs. The excitation pulse center
. 1 Bho\ oo - frequency is resonant with the vertical electronic transition of
o'(@) =% tanl‘(T) S dré 510:(00 + GO0~ the system (defined as zero).
5 The density matrix was propagated in the interaction repre-
ZTamlaDtam(ﬂh_w) (12) sentation (with the system Hamiltonidihy as the zeroth-order
h 2 Hamiltonian) using RungeKutta integratior?’ A total of 269

whereoy (w) is the imaginary part of the frequency-dependent
susceptibility associated with bath mogle If the force ong,
from the system is weak (as it must be for Redfield theory to
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Figure 2. Geometry of the model system. Six acetonitrile molecules
librate about fixed centers in a plane and respond to a change, upo
electronic excitation, in the dipole moment of a diatomic “solute”. The
“solvent” orientations shown correspond to the equilibrium configu-
ration in the electronic ground state. The labeled pairs are constrained
to librate in tandem, reducing the number of degrees of freedom to
three.

Figure 3. Peak frequency of the time-dependent fluorescence spectrum
Mwith inclusion of relaxation via Redfield theory. The three-coordinate
system, the systerrbath coupling, and the pulses are described in the
text. Results are shown for uncorrelated systdrath coupling, with
each of the three system coordinates coupled to an independent bath
coordinate {-). Also included is the peak fluorescence frequency for
an isolated system (- - -).

states in the ground manifold and 240 states in the excitedy,orq 4re several wells in each state, only one is significant at

manifold were included, but during the propagation high-lying room temperature and needs to be included in the calculations.
states with small populations<(l0~°) were dropped from the

ca:ﬁgétl?vr:édd System. The system models a few key [ll. Simulation Results_ and Comparison of Different
coordinates of a polar solvent around a polar solute. It also System-Bath Interactions
has been fully described in a previous palebut the most
important points will be reiterated here. As illustrated in Figure .
2, the model has three degrees of freedom with motions flgorescen_ce frequency_from the_photoexc!ted_model system
reminiscent of librations in the first solvation shell of acetonitrile, with coupling to a Redfield bath is sh.own in Figure 3 The
which have been shown to dominate the initial Stokes shift peak fluore_scence frequ_ency from the isolated system IS shown
evolution?® Six CHCN molecules are arrayed in a plane for comparison. For_ this plot, the three system coordirates
around a fixed diatomic “solute”, with fixed centers of mass e molecular librations, not the normal modese each
4.0 A from the center of the solute and from each other. The coupled to an independent bath mode (uncorrelated or inde-
coordinates are the in-plane rotations of these “solvent” Pendent coupling). The strength of coupling, linear and
molecules around their centers of mass; the number of dynamicalduadratic, in the system coordinates (and the magnitudes and
degrees of freedom is reduced from six to three by artificially relaxation times of the bath coordinate fluctuations) are chosen
constraining pairs of CECN molecules on opposite sides of to be the same for each mode
the solute to rotate in tandem.

The_united_ atoms interact via Lennardones and Coulombic Vio(r,a) = Z[G'ind(ri — re’i) + G (1 — re,i)z]qi (17)
potentials with parameters taken from Edwards € alhe T
solute is intended roughly to resemble a dipolar dye molecule;
its two sites are split by 2.0 A and have opposite charge. The The ratio of quadratic to linear coupling!'/G', is set to 8 rad,
only difference between ground and excited electronic states isa value chosen so that both linear and quadratic coupling have
a change in charge of the two solute sites fraM6e to +1.0e, a significant effect on the fluorescence signal. The overall
changing the dipole moment from 5.76 to 9.61 D. Unless ¢oupling strength is normalized as described in section I1.B such
otherwise specified, calculations assume room temperature (30Gnat the bath would absorb energy at a rate of 30%ps from
K). o undamped system motion. The actual energy dissipation rate

Several characteristics of the system can be extracted fromgom the damped system in simulations at 300 K is almost an

the potential. The _frequ_e_ncies of the normal modes at the o qer of magnitude larger; this difference will be discussed in
ground-state potential minimum are 194, 252, and 264cm section IIL.B.

and those of the excited state at its minimum are 188, 265, and . .
In Figure 3, the signal from the open system decays much

296 cntt (we will refer to the excited-state modes as 1, 2, and ! h X
faster than the comparison signal from the isolated system. At

3, respectively). The molecular librations are highly mixed in h ) . . . .
the normal modes. The difference in the excited-state potential ShOrt times, there is considerable smoothing of the signal, with

energy between the configurations for the lowest ground-state Missing small features, but the oscillation frequencies appear
minimum and lowest excited-state minimum (roughly the unchanged. Atlongertimes, the small residual signal oscillation
solvation energy) is-174 cntl. The change in difference  (barely visible in the figure from 1.5 to 2.5 ps) is very different
potential between these two configurations (roughly the steady- from the undamped signal. Its dominant oscillation is at the
state Stokes shift) is343 cnt™. The orientational displacement ~ frequency of mode 1 (188 cm), while the most prominent
upon excitation is small, especially in the libration labeled ‘b’. oscillation in the undamped signal is of mode 2 (265 ém

In terms of the excited-state modes, the displacements are 0.928, As mentioned in the Introduction, the simulated signal is very
—0.767, and 0.36gA/mw; for modes 1, 2, and 3. Although  similar to the time-dependent average of the potential difference

IIILA. Redfield Relaxation. The time-dependent peak



Multimode Open System J. Phys. Chem. A, Vol. 102, No. 38, 1998387

TABLE 1: Comparison of the Redfield Tensor Elements for Different Forms of the System-Bath Coupling?

coupling G G"IG Ebath Roo,11 Roz1,01 Roo 22 Ro2,02 Roo,33 Ro3,03
uncorrelated 1.14 8 30 6.19 —10.08 5.08 —9.51 4.74 —9.16
correlated 1 8 30 13.54 —15.66 0.52 —6.97 0.00 —6.57
linear 1.06 0 30 14.13 —15.94 0.58 —6.40 0.00 —6.01
quadratic 5.21 co 30 0.45 —16.48 0.00 —10.80 0.00 —9.52
crossterms 1.08 -8 30 13.64 —-16.32 0.59 —-6.11 0.00 —5.66
low-temp 1 8 442 19.08 —9.79 0.67 —0.89 0.00 —0.50

aAll the couplings except the first are “correlated”. The couplings are normalized as described in section 1I.B. The lowest tensor elements
representing population relaxatioR;) and dephasingRi ) are given, roughly corresponding to a single excitation in each of the three system
normal modesG' (G" for quadratic coupling) values are relative values of the parameters; the other unitsarfordel’/G', cmY/ps for Eparn,
and ps? for the tensor elements. See section Il for description of the different coupling forms.

between the electronic statesy = He — Hyg, ‘ ' '

— 4-state system
----- Full system

Dpeal?) = AE() = ]Z Pi(OTIAVIKD (18) e

T e
1

The oscillations iIME(t) and inwpealt) mostly reflect coherent g
motion of the system, manifested in the oscillations of the system  §
coherences. In the isolated system, the contributions of mode
1 to wpealt) decay faster than those of mode 2 because mode 1
has a broader range of frequencies (due to anharmonicity). But 400 |
interaction with the bath causes both modes to dephase faster
with roughly the same rate, leaving a slightly larger oscillation
in mode 1 due to the slightly larger displacement in that mode. soe = prw— py— 2000
Mode 3 is somewhat less important in both cases because there Time (fs)
is a smaller displacement from the ground state and thus smallefigyre 4. peak frequency of the time-dependent fluorescence spectrum
coherencespi, and smaller matrix elements afV. including only the first four states in the excited manifold compared

The rates of both librational population relaxation and to the signal from the full system. This demonstrates the importance
dephasing are determined by the elements of the Redfield tensopf transfer between coherences.
Rim. Of particular note are the elemegy, each of which
gives the population decay rate from st&téo statej (there L
also is a smaller excitation raR ), andRyjx, which gives a negligible. _

i i

rate of dephasing of the coherence between stasd k III.E_i. Correla_lted and Indepen(_jent_ Bath Coordlnates._
independent of other density matrix elements. These tensor | "€ Signal with independent coupling is compared to the signal

elements are given in Table 1 for the transitions between the oM @ system in which all three coordinates are coupled to the

ground librational state (0) and the first three excited states (1, SéMe bath mode (correlated coupling) in Figure 5a. The form

2, and 3), which each have one quantum in one mode of the correlated systembath coupling is

(approximately, as the system is not exactly harmonic). All , N

Redfield tensor elements other th& and Rijx connect Veorl1.0) = [Georr . (i = Te)) + Goor » (1 — )]0

density matrix components that oscillate at different frequencies. ' ! (19)

If these relaxation terms (called “nonsecular”) are small

compared to the frequency mismatch, their impact will oscillate Again the coupling strengths and bath relaxation times are

in time, averaging to zero. For the “uncorrelated” parameters chosen to be the same for all coordinaté§/G' = 8 rad 1,

used in Figure 3, the tensor elements between the lowest stateand the coupling strength is normalized so hat,= 30 cnTY

and the first excited state in each mode range from 4.7 to 10.1ps. The optical signals for these two cases are somewhat similar

psl Asillustrated by these examples, when system coordinatesfor about 600 fs. After that, a persistent oscillation in mode 2

are coupled to independent bath modes, the three modes relaxiominates the signal with correlated coupling. Thus, the form

at rather similar rates. of the signal is much different, and the decay is much slower
However, as many tensor elements can contribute to Redfieldthan that in the signal with independent coupling. The slow

relaxation, a single tensor element cannot be taken as adamping of mode 2 is consistent with the Redfield tensor

relaxation rate. Thus, the damping of the signal in Figure 3 is elements |Ro204 < |Ro1,01)-

slower than the elements shown in Table 1 alone might suggest. The decay of the system energy, shown in Figure 5b, depends

The damping is slowed because relaxation processes are ofteeven more strongly on the coupling form. The figure shows

sequential; e.g., the population in state 4 (doubly excited in mode the actual time-dependent average system energy in the simula-

1) mostly transfers to state 1 and then to state 0. Coherencedions, not to be confused with the hypothetical energy decay

also can grow due to transfer from other coherences, such agate used in the normalization. The energy of the system

p14t0 po1. The effect of such sequential processes is illustrated coupled to independent bath modes decays much faster than

in Figure 4, in which the signal from a simulation that includes the energy of the system coupled to a single bath mode but

only the four lowest vibrational states is shown to decay much with a more prominent oscillation (corresponding to mode 1).

faster than the signal from the full system (in addition to the  The system energy evolution is quite different from that of

smaller initial amplitude of oscillation). In principle, relaxation the optical signal because it depends on different system

between modes, such as that reflecteBuit2andRy; 02 could properties. While the signal is affected mostly by system

speed the relaxation of the some modes and slow relaxation ofcoherences, the system energy at a given time depends only on

other modes. For this system, however, such rates are mostly



7388 J. Phys. Chem. A, Vol. 102, No. 38, 1998

(a)

em™)

peak

w

(b)

Energy (cm")

0

-100

-500

675

650

625

800

575

Correlated
Independent

-250

-300
2000

2500 3000 3500 4000 4500 5000

500

1000
Time (fs)

2000

Correlated
Independent

575

525

550 \

-l L u L A

2000

2500 3000 3500 4000 4500 5000

Ungar and Cina

The reason some population relaxation rates that result from
correlated coupling are increased and some greatly suppressed
is because multiple system coordinates are coupled to the same
bath mode. The effects of the different system coordinates on
the bath mode can enhance or cancel each other, manifesting
in a constructive or destructive sum over system coordinates in
the tensor element

2
R = (0+)wjk% [Z Goonlli = ey T

G”corr((ri - re,i)z)jk]2 (J = k) (20)

Note that Gy was arbitrarily chosen to be the same for all
system coordinates; different choices would cause different
relaxation rates to be enhanced or suppressed. When the
coupling is uncorrelated, this interference cannot happen; as the
system coordinates are coupled to different modes, the tensor
element is a sum of squares rather than a square of a sum. As
is evident in Table 1, the same kind of interference can occur
with purely linear or purely quadratic coupling. Such interfer-
ence under correlated coupling also affects the damping of the
optical signal, but the effect is less dramatic because many more
terms contribute to th&j elements. Under the assumptions

used hereRyj can be written

550 -

1
525 L Rik,jk = _Tmzmh_z (Gcorrkk - GCOHFJ'])2 B
0 500

1000
Time {fs)

2000

1 1
Er; Rmmjj o 5 ”; Rmmkk (21)

Figure 5. Comparison of coupling of the three system coordinates to
the same+) and to independent (- - -) bath coordinates. The system
and the pulses are the same as those in Figure 3. Part a shows the peak L .
fluorescence frequency, and part b shows the average system energWherchorr corresponds to the quantity in square brackets in
The insets continue the figures to longer times (with a different €0 20. The interference is unlikely to affect all the terms at
horizontal scale). once.

The enhancement or suppression of dissipation due to
the librational populationsE = }; pj; €j. The signal tracks  constructive or destructive contributions among different system
coherent motion of the system, but energy dissipation includes coordinates is an interesting example of a relaxation process
loss of incoherent or random thermal energy as well as dampingspecific to a multicoordinate system. Enhanced population
of coherent motion. Experimentally, vibrational energy loss relaxation (phonon emission, as from state 1) can be regarded
rates can sometimes be inferred from the time dependence ofas the material analogue of the enhanced light emission that
signal oscillations; the oscillations tend to speed up as the systenoccurs from multiple excited sources in the optical process of
relaxes to states lower in the potential well (especially in systems superradiance, and suppressed population relaxation (as from
with larger Stokes shifts than ours h&%)Time-resolved Raman  states 2 and 3) is the analogue of subradidhce.
spectroscopy can also probe thermal energy changes in a chosen A second reason for the relative similarity at early times of
vibration. Recent work by lwata and Hamaguchi: [lwata, K.; the optical signal decay rates with correlated and independent
Hamaguchi, HJ. Phys. Chem. A997 101, 632.] monitored coupling is that it results from the normalization. The hypo-
the cooling of the €C stretch in photoexcited; rans-stilbene thetical dissipation that determines the normalization rate reflects
using such a “picosecond Raman thermometer” method. energy emission to the bath via coherent motion but not

The different energy dissipation rates in Figure 5b illustrate dissipation of incoherent energy; the normalization rate is
a significant difference between correlated and independentproportional to the square of the system vibrational coherences
coupling. The initial dissipation rate in both cases is very fast, created by the excitation pulse but does not depend directly on
comparable, when divided by a characteristic librational energy, the populations (see eq 13). Thus, the Stokes shift, which also
to the largest Redfield terms in Table 1 (not surprisingly). depends mostly on system coherence, is fairly well normalized.
However, within 100 fs the system energies diverge sharply But the larger portion of dissipation from this system is
from each other. Some of the population relaxation rates that neglected by the normalization. Hence, the simulated dissipation
result from correlated coupling are considerably faster than thoserates are much greater than the hypothetical rate, and the
from uncorrelated coupling, and some are very slow. Rhe simulated rates can vary.
terms with correlated coupling in Table 1 vary over 8 orders of ~ Oscillations in the system energy are due to nonsecular
magnitude, while the terms with independent coupling (and the transfers between populations and coherences. These couplings
R,k dephasing terms) are all of the same order of magnitude. are an essential feature of realistic dissipafomhe prominent
Hence, with correlated coupling, after most populations are in oscillation in the energy for independent systelnath coupling
equilibrium with each other, a few populations continue to decay is due to a fairly large term between tpg coherence and the
slowly and the energy only slowly reaches its thermal value. pgo ground librational state populatioRgo 01 = 1.96 ps?.
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Figure 6. Comparison of the effects of correlated coupling, linear and Figure 7. Demonstration of the importance of linear and quadratic

quadl’atIC, Il’l the SyStem COOI’dInatES Peak ﬂUOI’ESCEﬂCE frequency forcrOSStermS. Comparlson of the peak ﬂuorescence frequency (a) and

the pulses and system of Figure 3 with purely linear couplinpgnd the average system energy (b) for the pulses and system of Figure 3,
purely quadratic coupling (- - -). Part a shows the peak fluorescence wjth G"/G' = 8 (—) andG"/G' = 8 (- - -).

frequency, and part b shows the average system energy.

Note also that with independent coupling, the signal oscil- to linear coupling. Because of the normalization, the quadratic
lations are apparent well after the energy has decayed to verycoupling is relatively strong and the resultant optical signal
close to its equilibrium value. In this case, significant coher- decays very quickly. Although the dominant frequency is the
ences remain after population relaxation is nearly complete, same with linear and quadratic coupling, there is a small phase
causing coherent motion in a system with nearly thermal shift due most likely to the different damping rates.
populations. With correlated coupling, incoherent relaxation  The energy decay is well normalized for the first 100 fs
continues after the coherent motion has essentially disappearedFigure 6b). Afterward, the energy with quadratic coupling
(this is clearer with purely quadratic coupling, shown in Figure decays more quickly than the energy with linear coupling even
6 parts a and b below). though the Redfield tensor population relaxation elements in

III.C. Linear and Quadratic Coupling. The differences Table 1 are much smaller. Although quadratic coupling does
between relaxation with coupling, linear and quadratic, in the not couple adjacent states in a harmonic mode, it does couple
system coordinates are even more dramatic. In Figure 6a thestateg with j &= 2. The first excited state in each mode has no
signals with purely linear coupling and with purely quadratic statej — 2 to couple to and thus decays slowly, but the
coupling are compared for coupling to a single bath coordinate normalized coupling between many of the higher-lying states
(again the subsystem and pulses are the same as in Figure 3)s relatively strong and causes faster relaxation. The energy
Both signals are normalized as described in section II.B. The decay with quadratic coupling is very smooth because the
quadratic coupling causes much faster decay in the oscillationscoherences dephase so quickly. The energy oscillation with
of the fluorescence signal than does linear coupling. The linear coupling reflects continued coherence in mode 2.
difference between the effects of linear and quadratic coupling Comparison of the signals f@"/G' = 8 and—8 rad™%, with
is simplest in harmonic systems, in which quadratic coupling different sign of the quadratic coupling relative to the linear
causes pure dephasing but does not cause population relaxationoupling (both to a single bath mode), highlights the effects of
between adjacent levels. As the system here is not highly the crossterms of linear and quadratic coupling in the Redfield
excited, it is fairly close to harmonic. Since the fluorescence tensor. For a harmonic system, these crossterms would couple
frequency is mostly determined by the average configuration populations to coherences and coherences to each other; all these
of the system, with motion arising mostly from system libra- terms in the Redfield tensor would be neglected under a secular
tional coherences, the signal oscillations are effectively dampedapproximation. The relative sign of the linear and quadratic
by pure dephasing due to quadratic coupling. Energy dissipationcoupling and hence their crossterms does have a small effect
and the normalization, on the other hand, are primarily due to on the fluorescence signals and system energies in Figure 7.
the elements of the coupling,(r) that cause population  The signal oscillation in mode 2 is slightly less damped with
relaxation between adjacent levels and therefore are sensitiveG''/G' = —8. However, the energy decays somewhat faster.
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The individual Redfield tensor elements, particularly the non- (@ °[ P s T T T T T
secular terms, can differ in the two cases by a factor of 2 or =~} |----- 300 K
more (though the terms in Table 1 are quite similar). o0 N LLL ARG

II.D. Temperature Dependence. The temperature depen- 2000 2500 3000 3500 4000 4500 0%

dence of the dissipation combines several different factors. At
low temperature, the system is more coherent (the coherences
between vibrational states in the electronically excited compo-
nent of the density matrix are larger) because fewer vibrational s* 4,
states of the ground electronic manifold are populated in the
initial thermal distribution. Fewer and lower states in the excited
manifold are populated as well (both initially and at final 00
equilibrium). Temperature also affects the frequency depen-
dence of9* anda'’ through the temperature dependence of the 500 L L L
bath correlation functions. Because of detailed balance, the 0 500 Ti‘r:e"(‘f’s) 1500 2000
magnitude of terms that cause downward transitions in the
simulations and in the normalization increases with decreasing s7s
temperature (see eq 9 with < 0 and eq 12); upward transitions  (b)
are shut off. This effect is most pronounced for frequencies ;s == 325
comparable to the temperature (208.5érat room tempera- 5% \ =
ture). There is an additional temperature dependence: the batr'g 625 MY | . . . . 3002
fluctuations[gZCshrink with decreasing temperature. Since in %000 2500 3000 3500 4000 4500 5000
Redfield theory the relaxation is proportional to the equilibrium
fluctuations of the bath, this effect would decrease dissipation
at low temperature. The size of this effect would depend on
the exact nature of the bath, which we have avoided specifying. -
Thus, we neglect the temperature dependence of the bath 225
fluctuations; as the temperature drops to become much smaller | ----- 300 KI 10K
than the frequencies of bath modes resonant with system . . . 200
transitions, zero-point motion would make this dependence 0 500 1000 1500 2000
vanish anyway. Time (5

The signal with correlated coupling for a system and bath at Figure 8. Effects of relaxation at low temperature. The peak

- . - fluorescence frequency (a) and system energy (b) for the system and
10 K is compared to the signal for system and bath at 300 K in bath at 10 K {-) are compared to the signal from the system at 300 K

Figure 8a. The coupling isot renormalized; the normaliza- (... pylse parameters are the same as those in Figure 3. The
tion—dissipation rate at 10 K is 442 cttips. The normalization  temperature dependence of the bath fluctuation amplitude is neglected
rate is strongly increased at low temperature, mostly because it(see text). Note the shifted energy scales in Figuretfie bottom of

is proportional to the squares of the larger coherences (see edhe figure in each case is the thermal energy at that temperature.
13). Despite the greater initial coherence at low temperature,

the peak frequency traces are quite similar. The width of the linear coupling with the parameters used here) under the secular
fluorescence spectrum (not shown) is narrower at low temper- approximation is exponential decay of the superthermal energy
ature. The signal at longer times (in the inset) is damped at the rate:T" = 7[@2in G 2[Held ! = 7[G2In 1G22 (Rw) ™ x
somewhat more slowly at 10 K. Damping is slower because tanh{3iw/2) (compare egs 25, 50, and B8 in the second
dephasing of states low in the manifold is generally slowed at reference in ref 32); the inverse proportionality of the rate to
low temperature, as can be seen in Table 1. The dephasing ofhe thermal energyHeld is similar to what is found in our
these states is slowed because population transfer to higherSimulation. After about 200 fs, the rate of energy loss slows,
energy states is shut off at low temperature; in eq 21Rhg; becoming slightly slower than that at 300 K. In both cases,
andRmm kcontributions withm > j .k become small. The final after most populations reach equilibrium with each other, the
values of the peak frequency are different because the averagéate of the remaining dissipation is limited by the slowest
coordinates depend on temperature in this anharmonic systemrelaxation rates (recall that with correlated coupling there is a

The energy dissipation at 10 K is compared to that at 300 K W.id(? va}riety of population relaxation rates). The long-time
in Figure 8b. In each case, the energy is plotted relative to its dissipation rate will be someyvhat temperature dep_endent because
value at thermal equilibrium. The initial superthermal energy &t lOW temperature the widely varying relaxation rates are
is roughly the FranckCondon energy in the excited electronic averaged over fewer states.
state and hence varies little with temperature. It is slightly lower
at room temperature because of the finite excitation pulse
duration3® At early times, energy dissipates more quickly from Redfield and other relaxation theories are usually applied to
the low-temperature system despite the similarity of the super- either a single system coordinate (often harmonic) or a two-
thermal energies. Interactions with a low-temperature bath arestate system. The system is typically coupled to a parametrized,
more likely to relax the system and less likely to excite it, fast-decaying bath. If multiple system coordinates are needed,
reflected in larger population relaxation elements in Table 1 they are generally uncorrelated and each coupled to a separate
and smaller excitation elements at low temperature. But the bath. Yet optical experiments often induce motion in multiple,
excited populations are smaller at low temperature, slowing coupled coordinates that interact with the same solvent mol-
relaxation and counteracting the effect of the larger Redfield ecules. This paper is a first step toward simulating the relaxation
elements in eq 3. The net result for a linearly displaced of more complicated models. While we too assume a param-
harmonic oscillator (and energy relaxation is due primarily to etrized, fast-decaying bath, our model system has three coupled,
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IV. Concluding Remarks
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anharmonic coordinates, and we explore several different formsBrownian oscillator model has been shown to be equivalent to
of coupling to the bath. Redfield relaxatiors?

Some relaxation phenomena can only occur with multiple ~ The assumption of independent relaxation of each system
system coordinates. Most simply, when different modes relax mode is somewhat different in general from our “uncorrelated”
at different rates, the optical signal can be smoothed quickly coupling case, in which the relaxation of eaital system
but show only slow decay of the amplitude of a remaining coordinate is independent. Itis not clear why collective system
oscillation. Widely different relaxation rates are most likely modes made up of different motions of the same system atoms
for system coordinates that are coupled to the same (or toshould be coupled to entirely independent bath modes. Un-
correlated) bath modes; the combined influence can augmentcorrelated relaxation of localized coordinates seems more
or shut off relaxation pathways. Thus, if multiple system plausible. Independent modes do not allow the transfer of
coordinates in a normal mode drive the same bath mode inenergy between modes, which could be significant in anhar-
opposite directions, little energy will dissipate into that bath monic systems. However, independent modes with individually
mode. Similar interference could occur in reverse if multiple chosen relaxation rates could incorporate some of the interfer-
bath coordinates are coupled to a single system mode; it wouldence effects described in section I11.B.
be manifested in larger or smaller correlation functions and The combination of harmonic system modes with linear
values of §),. As noted earlier, these effects are material coupling neglects pure dephasing. Such an approximation is
analogues to super- and subradiance. When the system modeBarticularly severe in simulating an optical signal such as
are coupled to each other, another phenomenon can occurfluorescence that is strongly affected by dephasing. Displaced
transfer between modes can depopulate states excited in on&armonic modes without Duschinsky rotation or frequency
mode and slow relaxation in another mode. But this process changes also result in the wrong initial density matrix in the
was less important in our model system. excited electronic state; if the model is based on the ground

Our results also confirm the importance of processes other €€ctronic state, the frequencies of motion could be wrong as
than simple dephasing and population relaxation, including well (note the different frequencies in the two st@tesm our model
“nonsecular” (oscillating) processes. Although individual Red- SYStém). On the other hand, the assumption of displaced
field tensor elements are useful for comparing different coupling nrmonic modes in the multimode Brownian oscillator model
forms, they are often very different from the actual energy allows strong coupling to a bat_h gnq hence enables simulation
dissipation and signal damping rates, especially due to “cascad-°f Overdamped modes. The limitations of the model may be
ing” populations and transfer of coherence. The system energy!€SS important in treating overdamped modes because of the
often shows prominent oscillations due to coupling between '2ck of information in the fast-decaying dynamics.

populations and coherences. These couplings also affect the FOr more slowly damped systems another method appears
optical signal somewhat. possible, if not easy. A few collective coordinates coupled to

the electronic state and to each other could be picked out of the
model of a solution to form the subsystém.The systers
bath coupling would be known from the full potential. The

The time-resolved fluorescence Stokes shift is a specific probe
of some types of relaxation. It is sensitive primarily to coherent

motion of the system and is damped by dephasing. In ContraSt’bath correlation functions could be estimated from classical

energy dissipation, for which the Stokes shift is sometimes simulation. This approach would allow simulation of a real

misconstrued to be an experimental measure, is due to pOpma'solution (as real as the potential surface) instead of a set of
tion relaxation. In our model system at room temperature, P

. . ; o parameters describing relaxati#thut it also would be restricted
population relaxation is mostly incoherent emission unrelated . X :
. by the actual potential. Convenient assumptions such as weak
to system coherence. Thus, depending on the sysbaihn ; . . >
; ) . coupling and Markovian separation of time scales would have
coupling form and the consequent relaxation rates, the signal

can continue to oscillate when there is little superthermal energyto be justified or avoided rather than built in. HOV\.’ Iarge the
. ... <7 system would have to be to enable these approximations for
left in the system or can be damped long before dissipation is o . )
. .~ the rest of a realistic bath remains an open question.
complete. The fluorescence dynamics from an anharmonic
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