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When dividing a large system into a subsystem and a bath, one sometimes needs to include multiple nuclear
coordinates in the subsystem in order to treat the remaining bath modes by Markovian relaxation theory
(which assumes fast bath relaxation). This paper examines the effects of Redfield relaxation on the time-
resolved fluorescence signal and on the loss of energy from a three-mode system. Simulations are compared
for system coordinates coupled to the same bath mode and to independent bath modes, for coupling linear
and quadratic in the system coordinates, and for different temperatures. To make these comparisons meaningful,
a criterion is proposed for normalization of the coupling strengths in the different cases. The fluorescence
Stokes shift and the system energy are shown to be sensitive to different relaxation processes. The coupling
of multiple system coordinates to the same bath mode results in a wide range of relaxation rates. Simple
descriptions in terms of individual population relaxation and coherence dephasing rates are inadequate due to
sequential processes and to coupling between populations and coherences. These results have implications
not only for Redfield treatments but also for other relaxation theories such as the Brownian oscillator model.

I. Introduction

Recent progress in the capability of femtosecond laser sources
has fostered widespread investigation of chemical dynamics in
condensed phases using a variety of time-resolved nonlinear
optical measurements. In the most general (and vaguest) terms,
these experiments optically excite a chromophore and measure
the influence of interactions between the chromophore and a
solvent on its subsequent evolution. The evolution can include
both oscillatory coherent nuclear motion and incoherent popula-
tion decay. Electron transfer and energy transfer also can cause
vibrational coherences that are observable by ultrafast optical
measurements.

If the temperature is sufficiently high compared to the relevant
frequencies of nuclear motion and if the Born-Oppenheimer
approximation holds, classical nonequilibrium molecular dy-
namics simulations can model the time evolution of the large
numbers of solvent molecules responding to and influencing
the excited chromophore. But often, some important features
of the motion must be described quantum mechanically.
Unfortunately, the rapid rise in the required number of basis
functions with increasing degrees of freedom precludes incor-
poration of all solvent motions in a fully quantal treatment. Thus,
approximate relaxation methods have been appropriated from
magnetic resonance, quantum optics, and other areas of spec-
troscopy and dynamics. In this approach, a small number of
modes are treated rigorously (the system) and the remainder
are subsumed into a less carefully described bath.

The system typically comprises a bare minimum of important
degrees of freedom, such as the optically coupled electronic
levels subject to a resonant excitation, or the donor and acceptor

states and a generalized collective nuclear coordinate in an
electron-transfer reaction. While the most obvious decomposi-
tion recognizes the directly measured or excited degrees of
freedom as the system and relegates everything else to the bath,
other separations between system and bath may work better in
some cases. In particular, solvent modes that are strongly
coupled to the key coordinates may have to be included in the
system.

Redfield theory1,2 is one such approach to incorporating
relaxation in a quantum dynamics calculation. In Redfield
relaxation, the system evolves in contact with a bath that starts
and stays in thermal equilibrium; the bath is unperturbed by
the presence of the system and carries no memory of past states
of the system. Often, however, an optically excited chro-
mophore launches nonequilibrium dynamics in the surrounding
medium. For example, in classical simulations of the cage effect
in geminate recombination (in which the atoms in a photoexcited
solute begin to dissociate impulsively but then collide with the
surrounding solvent molecules) shock waves have been seen
in the host medium.3

In principle, bath dynamics can be incorporated by going
beyond the Markovian (memoryless) assumptions of Redfield
theory. The theory becomes difficult in practice, but progress
has been made along this line for some well-defined model
problems.4-9 Mixed quantum-classical methods have been
employed as well, including some physically motivated but
phenomenological approaches to the inclusion of quantum
mechanical coherence loss.10-12 Here, we explore a less
demanding alternative approach; we retain the Markovian
structure of Redfield theory and simply enlarge the “system”
to include multiple nuclear degrees of freedom that couple
strongly to an optically driven electronic transition but are not
themselves directly excited by the external laser field.
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As a simple nonlinear optical measurement in which to
explore this approach, we choose the time-dependent Stokes
shift of a “solvated” chromophore. Specifically, we simulate
the peak frequency of the time-dependent fluorescence spectrum
following short-pulse excitation,ωpeak(t). Under favorable
circumstances, this quantity reflects the time-dependent average
electronic transition energy∆E(t), the expectation value of the
potential difference between ground and excited electronic states
as the nuclear distribution initially corresponding to ground-
state equilibrium evolves in the excited electronic state. As
time-resolved fluorescence is (in theory) one of the simplest
nonlinear optical measurements and since excitation of the solute
molecule induces nonequilibrium motion of nearby solvent
molecules, the Stokes shift forms an ideal testing ground for
our implementation of relaxation theory.

In this study, our system is a three-mode model whose
simulated time-dependent fluorescence spectra have been ex-
haustively investigated.13 The model system, a polar solute
interacting with several polar solvent molecules, is here
augmented with a surrounding medium that induces “vibra-
tional” relaxation and dephasing in the system coordinates (the
system coordinates are in fact librations). As our purpose is
simply to make a preliminary test of relaxation theory in a
multimode system and to explore different system-bath cou-
pling schemes, we characterize the bath in only the most cursory
terms and do not attempt to identify our model with any specific
bulk polar solution.14

The simulated signals shown below are oscillatory and do
not look much like the overdamped solvation Stokes shift
experimental signals. Indeed, as a weak coupling theory,
Redfield relaxation is only good for underdamped motion.
However, small systems with Redfield relaxation similar to the
one simulated here could model related experiments, such as
the pump-probe spectroscopy of polyatomic chromophores in
solution, of solutions with local solvent modes including
cryogenic rare gas matrixes, and of chromophores in biological
systems. In addition, solvation Stokes shifts and other over-
damped signals could be due to “unphasing” of several modes,
each of which is underdamped. With a few more system
coordinates (and somewhat faster computers), one could simu-
late such overdamped signals using Redfield relaxation.

We address several issues of general importance in the
application of relaxation theory to nonlinear optical signals. Can
the probed quantity (in this caseωpeak(t)) distinguish between
different forms of system-bath coupling, e.g., coupling that is
linear versus quadratic in the system coordinates and correlated
versus uncorrelated among different system coordinates? What
is the relative influence on the signal of vibrational energy
relaxation and vibrational dephasing? Is the fluorescence Stokes
shift an accurate probe of system energy relaxation? Are there
relaxation phenomena specific to multimode systems? Do
“nonsecular” relaxation processes, which couple system density
matrix elements that oscillate at different frequencies, affect the
signal?

An interesting technical issue arises in the comparison of
different forms of the system-bath coupling. In an attempt to
determine whether different system-bath couplings give rise
to sensibly different optical signals, we must not misconstrue
sensitivity to changes in coupling strength as an indication of
sensitivity to different forms of system-bath interaction. To
prevent this, we devise a normalization criterion whereby
different forms of interaction may be said to have more-or-less
equivalent interaction strengths.

The rest of the paper is laid out as follows. We first briefly
describe our application of Redfield relaxation theory, the
coupling normalization criterion, the simulated optical signal,
and the model system.ωpeak(t) is then computed for different
system-bath coupling schemes. Results with correlated and
uncorrelated coupling are compared. In the context of correlated
coupling only, quadratic and linear coupling are compared, the
effects of linear-quadratic crossterms are examined, and the
temperature dependence is discussed. We conclude with a brief
extension of our discussion to the useful but phenomenological
Brownian oscillator model and with some suggestions for future
developments.

II. Methods and Model

II.A. Redfield Theory with a Simple Bath. Quantum
dynamics simulations at present are possible with only a few
degrees of freedom (except in some harmonic models). While
few-mode models may be sufficient to simulate the initial
motions of nearby solvent molecules in response to the electronic
excitation of a chromophore, small systems do not allow
effective dissipation of vibrational energy away from the
chromophore, dephasing of coherent nuclear motion, or other
effects of real baths. We will use Redfield theory1,2,15to include
additional bath coordinates that are weakly coupled to the
system. Under appropriate conditions, this approach can
simulate relaxation of the small system, including both decay
of vibrational coherences (dephasing) and vibrational population
relaxation,16 in a realistic manner.

We partition the full vibronic Hamiltonian into three parts:

a system HamiltonianĤs, a bath HamiltonianĤb, and a coupling
V̂(r ,q) that depends on both the system coordinates (r ) and a
subset of bath coordinates coupled to the system (q). The
system includes key collective solvent coordinates and would
include Franck-Condon active modes of the chromophore
(fixed in our model).

The derivation of Redfield theory relies on the following
assumptions.

(1) The system and bath density operators are initially
separable,Ftot(0) ) Fs(0) Fb. The density operator prepared by
the excitation pulse will be separable if the system-bath
coupling is negligible at equilibrium in the ground electronic
state and in the propagation during the pulse and if the bath is
affected by neither the pulse nor the electronic state.

(2) The coupling between the system and bath during the
propagation is weak. In addition, the bath average of the
coupling is assumed to be zero,Trb[FbV̂(r ,q)] ≡ 〈V̂(r ,q)〉 ) 0,
for any value of the system coordinater ; the system Hamiltonian
is thenĤs ) 〈Ĥtot - Ĥb〉.

(3) Decay of the relevant bath correlation functions is rapid
compared to the relaxation rates of the system (to enable a
Markovian approximation).

Under the first two assumptions the Hamiltonian for a system
that evolves adiabatically in the excited electronic state is

where “g” and “e” refer to the ground and excited electronic
states. Hg is used only for the initial density matrix following
the excitation pulse and for the fluorescence, as the fluorescence
signal reflects dynamics only in the excited electronic state.

The partition of a bulk solution into system and bath may
not be simple. By assumption, the bath potential is not changed

Ĥtot ) Ĥs + Ĥb + V̂(r ,q) (1)

Ĥtot ) |g〉Hg〈g| + |e〉He〈e| + Hb + |e〉V(r ,q)〈e| (2)
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or displaced by the electronic state (although small changes
could be incorporated in the system-bath coupling). However,
the bath still can move following optical excitation; as illustrated
in Figure 1, after the electronic state change displaces the system
potential, coupling of the bath to the system nuclear coordinates
displaces the bath equilibrium and causes bath motion. For the
Markovian approximation to hold, the induced bath motion must
be damped faster than the system relaxes. The assumptions of
Redfield theory could be met by including in the subsystem a
sufficiently large buffer of solvent coordinates between the
excited chromophore and the bath, thus ensuring little distur-
bance of the bath. There is no guarantee, however, that such a
subsystem could be defined small enough to enable rigorous
treatment of its internal dynamics. In particular, we do not
attempt to validate the assumptions for a small system in the
polar solutions used in Stokes shift experiments. But these
assumptions make feasible the simulation of the dissipative
dynamics of a multimode system.

Under these conditions the effects of coupling to a bath on
the evolution of the reduced system density matrix can be
incorporated (using perturbation or projection operator tech-
niques) in the Redfield relaxation tensorRjk,lm,

wherej, k, l, andm indicate nuclear eigenstates of the system,
F is the system density matrix,ωjk is the Bohr frequency (εj -
εk)/p, and Ajk is the element〈j|A|k〉 of operator A. Pollard and
Friesner17 have shown that for system-bath coupling written
as a sum of products of system and bath operators,

the equations of motion can be written

with

Here h.c. is the Hermitian conjugate and〈Fa(τ)Fb〉 is a bath
correlation function (with both equilibrium and evolution
determined byHb). The relevant bath dynamics are specified
by (θab

+ )ω evaluated at the system Bohr frequenciesωjk. As
Pollard and Friesner have explained,17 there is a computational
advantage to evaluatingF̆jk(t) using eq 5 rather than eq 3. While
the latter requires storage and multiplication of theN4 Redfield
tensor elements (whereN is the number of system eigenstates),
the former entails storing and multiplying onlyN × N matrixes,
which scales asN3.18

The system-bath coupling can be put in the form of eq 4 by
expanding the coupling potential in terms of the displacements
of the system and bath coordinates from an appropriate reference
configuration (re,0) (the reference values of the bath coordinates
qa are arbitrarily set to zero).19 To keep the displacements small
at long times, the reference configuration should be near the
average coordinates in the uncoupled HamiltoniansHe andHb.
We choosere to be the lowest minimum of the system potential
(slightly different from the average in our anharmonic system)
so that the expansion does not depend on the temperature. For
a harmonic system, pure dephasing enters only with coupling
quadratic in the system coordinates; thus, to include appropriate
dephasing for a system that is close to harmonic, we include
coupling terms linear in the bath coordinates and up to quadratic
in the system coordinates

In this approximation, the coupling operators in eq 4 are
specified;Fa ) qa, andGa is equal to the quantity in square
brackets in eq 8. As〈V〉 ) 0, terms zeroth order in the bath
modes are incorporated inHe. We assume there are no terms
zeroth order in the system coordinates; such terms would
incorporate differences between the bath potentials in the excited
and ground electronic states (sinceHb is the same in the two
states, any difference must be included in the coupling).
Coupling to many bath molecules can be included in relatively
few explicit coordinates ifqa (and possibly ri) represent
collective motions of many molecules.

In principle, the derivatives of the coupling potential in eq 8
could be calculated from an analytical potential, and the bath
correlation functions of eq 7 could be simulated using classical
molecular dynamics20,21or derived from experiment.22 Instead,
we will posit a bath that allows realistic dissipation while
inherently obeying the assumptions of Redfield theory. The
coupling derivatives are treated as parameters. We make some
dramatic assumptions to simplify the relevant bath dynamics,
being careful to preserve detailed balance.19,23 We neglect
entirely the imaginary parts ofθ+, allowing the correlation
function in eq 7 to be symmetrized. The bath coordinates are
assumed to be linearly independent,〈qa(τ)qb〉 ) 0 for a * b
(but one bath coordinate may be coupled to multiple system

Figure 1. Illustration of motion induced in “bath” modes by excitation
of the system. Contour plots are shown of a ground electronic state
potential energy surface with one system and one bath mode and of a
rotated and displaced excited-state potential. The heavier line shows
the classical trajectory in the excited state starting at the minimum of
the ground state. Although the potentials are displaced only in the
system mode, motion is induced in the bath mode as well.

Fjk(t) ) -iωjkFjk(t) + ∑
l,m

Rjk,lmFlm(t) (3)

V(r ,q) ) ∑
a

Ga(r )Fa(q) (4)

Fjk(t) ) -iωjkFjk(t) +
1

p2
∑

a

{[Ga
+F(t), Ga] + h.c.}jk (5)

(Ga
+)jk ) ∑

b

(Gb)jk(θab
+ )ωjk (6)

(θab
+ )ω ) ∫0

∞
dτ e-iωτ 〈Fa(τ)Fb〉 (7)

V(r ,q) ≈ ∑
a

[∑
i

∂
2V(re, 0)

∂ri ∂qa

(ri - re,i) +

1

2
∑
i,j

∂
3V(re, 0)

∂ri ∂rj ∂qa

(ri - re,i)(rj - re,j)]qa (8)
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coordinates; see section III.B). Extending the Redfield ap-
proximation of fast relaxation of the bath, the symmetrized
correlation functions are assumed to decay quickly compared
to the nuclear Bohr frequencies of the system. If the fast decay
of the correlation functions is exponential, (1/2)〈qa(t)qa +
qaqa(t)〉 ) 〈qa

2〉 exp(-|t|/τa), then

(â ) 1/kbT). The frequency dependence of (θ+
ab)ω maintains

detailed balance. The prefactor 2τa〈qa
2〉 also is treated as a

parameter; it is redundant with the coupling derivatives and need
not be separately specified. Note from the first equality in eq
9 that with these assumptions (θ+

ab)ω is closely related to the
spectral density of the system-bath coupling.

II.B. Normalization of Different System-Bath Couplings.
To fairly compare the effects of different ways of coupling the
bath to the system, we need to “normalize” the overall rate of
dissipation in each case. Our criterion will be the rate at which
energy is absorbed by the bath under the influence of the
evolving system. Specifically, two forms of coupling to a bath
are considered normalized if the associated baths absorb energy
at equal rates from the system when the system evolves without
feedback from the bath. The rates are averaged over a time
that is long compared to the system periods. In this hypothetical
situation, considered solely for the purpose of normalization,
the system acts as an oscillating force on the bath due to its
coherent motion. The force that acts on the bath coordinateqa

) Fa is taken to be-〈Ga(t)〉s, the time-dependent average of
-Ga(r ) under the evolving distribution of the isolated system.
When expanded in the system eigenstates,〈Ga(t)〉s is a sum of
discrete-frequency components

The initial density operator,F(0), is set identical to the thermal
equilibrium density operator (see section II.C) transferred
unchanged to the excited electronic state so that the normalized
coupling will not depend on the laser pulses.

Assuming that none of the Bohr frequencies are degenerate,
the time-averaged rate of energy absorption into independent
bath coordinatesqa is24

whereRa′′(ω) is the imaginary part of the frequency-dependent
susceptibility associated with bath modeqa. If the force onqa

from the system is weak (as it must be for Redfield theory to
be valid), the fluctuation-dissipation theorem shows that
Ra′′(ω) is proportional to the real part of (θ+

aa)-ω
24 and hence

can be evaluated using the same assumptions (listed above eq
9):

Thus, the final expression for the hypothetical rate of energy
loss to the bath in the absence of feedback to the system is

Note that in this expression the bath absorbs energy only
under the influence of system coherences, as the Bohr frequency
of the populations,ωjj, is zero. For example, incoherent
distributions among eigenstates will dissipate no energy in this
normalization calculation because they do not move in an
isolated system. Thus, the normalization reflects absorption by
the bath only of energy from coherent motion in the system,
while the decay of the system energy in actual simulations also
includes incoherent population relaxation of a nonthermal
distribution.

II.C. Calculation of the Fluorescence Signal.The observ-
able that will be simulated is the peak frequency of the time-
dependent fluorescence spectrum following excitation by a short
pulse as observed by fluorescence upconversion. We previously
derived an expression for this observable and examined it for
our model system;13,25 here we just give the expression
(equivalent to eqs B1-B3, the “observed” spectrum, in ref 13).
The initial density matrixF(0) is a piece of the ground electronic
state equilibrium density matrix promoted to the excited state
by a short pulse:

whereFeq ) exp(-âHg)/Tr[exp(-âHg)], and

is the pulse propagator for electronic excitation by an optical
pulse with center frequencyΩp and durationτp. After the pulse
action, the density matrix is propagated in the excited state as
described in section II.A. Assuming that the excitation pulse
and upconversion pulse are separated in time, the time-dependent
fluorescence spectrum observed by upconversion is a window
on the propagated density matrix component

This expression is equivalent to the stimulated-emission com-
ponent of a pump-probe signal under similar conditions.13 The
peak fluorescence frequency at a given time,ωpeak(td), can be
found from the maximum of the signalF(ω, td) with respect to
frequencyω (noting thatω occurs only in the upconversion
pulse propagators).

In calculating the time-resolved fluorescence spectrumF(ω,
td) for a system and bath, we include relaxation via the Redfield
tensor during the evolution in the excited state between the
temporal centers of the excitation and upconversion pulses, but
we neglect relaxation in calculating the pulse propagators (as
well as neglecting effects of pulse overlap).26 All simulations
in this paper use an excitation pulse length of 10 fs and an
upconversion pulse length of 20 fs. The excitation pulse center
frequency is resonant with the vertical electronic transition of
the system (defined as zero).

The density matrix was propagated in the interaction repre-
sentation (with the system HamiltonianHe as the zeroth-order
Hamiltonian) using Runge-Kutta integration.27 A total of 269

Ėbath) 2 ∑
a

k>j

2τa〈qa
2〉

p
(âpωkj

2 ) ωkj|Fkj(0)(Ga)jk|2 (13)

F(0) ) P(Ωexc,τexc)FeqP
†(Ωexc,τexc) (14)

P(Ωp, τp) ) - i

x2πτp

∫-∞

∞
dτ exp(-τ2/2τp

2) ×

exp[i(He - pΩp)τ/p] exp(-iHgτ/p) (15)

F(ω, td) ) Tr[P(ω, τup)P
†(ω, τup) F(td)] (16)

(θab
+ )ω ) δa,b

1

1 + eâpω ∫-∞

∞
dτ e-iωτ 1

2
〈qa(τ)qa + qaqa(τ)〉 ≈

δa,b2τa〈qa
2〉 1

1 + eâpω
(9)

〈Ga(t)〉s ) Tr[exp(-iHet/p)F(0) exp(iHet/p)Ga(r )] )

∑
j,k

Fkj(0)(Ga)jk exp(-iωkjt) (10)

Ėbath) ∑
a,j,k

ωjkRa′′(ωjk)|Fkj(0)(Ga)jk|2 (11)

Ra′′(ω) ) 1
p

tanh(âpω
2 ) ∫-∞

∞
dτ eiωτ 1

2
〈qa(t)qa + qaqa(t)〉 ≈
2τa〈qa

2〉
p

tanh(âpω
2 ) (12)
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states in the ground manifold and 240 states in the excited
manifold were included, but during the propagation high-lying
states with small populations (<10-5) were dropped from the
calculation.

II.D. Model System. The system models a few key
coordinates of a polar solvent around a polar solute. It also
has been fully described in a previous paper,13 but the most
important points will be reiterated here. As illustrated in Figure
2, the model has three degrees of freedom with motions
reminiscent of librations in the first solvation shell of acetonitrile,
which have been shown to dominate the initial Stokes shift
evolution.28 Six CH3CN molecules are arrayed in a plane
around a fixed diatomic “solute”, with fixed centers of mass
4.0 Å from the center of the solute and from each other. The
coordinates are the in-plane rotations of these “solvent”
molecules around their centers of mass; the number of dynamical
degrees of freedom is reduced from six to three by artificially
constraining pairs of CH3CN molecules on opposite sides of
the solute to rotate in tandem.

The united atoms interact via Lennard-Jones and Coulombic
potentials with parameters taken from Edwards et al.29 The
solute is intended roughly to resemble a dipolar dye molecule;
its two sites are split by 2.0 Å and have opposite charge. The
only difference between ground and excited electronic states is
a change in charge of the two solute sites from(0.6e to (1.0e,
changing the dipole moment from 5.76 to 9.61 D. Unless
otherwise specified, calculations assume room temperature (300
K).

Several characteristics of the system can be extracted from
the potential. The frequencies of the normal modes at the
ground-state potential minimum are 194, 252, and 264 cm-1,
and those of the excited state at its minimum are 188, 265, and
296 cm-1 (we will refer to the excited-state modes as 1, 2, and
3, respectively). The molecular librations are highly mixed in
the normal modes. The difference in the excited-state potential
energy between the configurations for the lowest ground-state
minimum and lowest excited-state minimum (roughly the
solvation energy) is-174 cm-1. The change in difference
potential between these two configurations (roughly the steady-
state Stokes shift) is-343 cm-1. The orientational displacement
upon excitation is small, especially in the libration labeled ‘b’.
In terms of the excited-state modes, the displacements are 0.928,
-0.767, and 0.366xp/miωi for modes 1, 2, and 3. Although

there are several wells in each state, only one is significant at
room temperature and needs to be included in the calculations.

III. Simulation Results and Comparison of Different
System-Bath Interactions

III.A. Redfield Relaxation. The time-dependent peak
fluorescence frequency from the photoexcited model system
with coupling to a Redfield bath is shown in Figure 3. The
peak fluorescence frequency from the isolated system is shown
for comparison. For this plot, the three system coordinatess
the molecular librations, not the normal modessare each
coupled to an independent bath mode (uncorrelated or inde-
pendent coupling). The strength of coupling, linear and
quadratic, in the system coordinates (and the magnitudes and
relaxation times of the bath coordinate fluctuations) are chosen
to be the same for each mode

The ratio of quadratic to linear coupling,G′′/G′, is set to 8 rad-1,
a value chosen so that both linear and quadratic coupling have
a significant effect on the fluorescence signal. The overall
coupling strength is normalized as described in section II.B such
that the bath would absorb energy at a rate of 30 cm-1/ps from
undamped system motion. The actual energy dissipation rate
from the damped system in simulations at 300 K is almost an
order of magnitude larger; this difference will be discussed in
section III.B.

In Figure 3, the signal from the open system decays much
faster than the comparison signal from the isolated system. At
short times, there is considerable smoothing of the signal, with
missing small features, but the oscillation frequencies appear
unchanged. At longer times, the small residual signal oscillation
(barely visible in the figure from 1.5 to 2.5 ps) is very different
from the undamped signal. Its dominant oscillation is at the
frequency of mode 1 (188 cm-1), while the most prominent
oscillation in the undamped signal is of mode 2 (265 cm-1).

As mentioned in the Introduction, the simulated signal is very
similar to the time-dependent average of the potential difference

Figure 2. Geometry of the model system. Six acetonitrile molecules
librate about fixed centers in a plane and respond to a change, upon
electronic excitation, in the dipole moment of a diatomic “solute”. The
“solvent” orientations shown correspond to the equilibrium configu-
ration in the electronic ground state. The labeled pairs are constrained
to librate in tandem, reducing the number of degrees of freedom to
three.

Figure 3. Peak frequency of the time-dependent fluorescence spectrum
with inclusion of relaxation via Redfield theory. The three-coordinate
system, the system-bath coupling, and the pulses are described in the
text. Results are shown for uncorrelated system-bath coupling, with
each of the three system coordinates coupled to an independent bath
coordinate (s). Also included is the peak fluorescence frequency for
an isolated system (- - -).

Vind(r ,q) ) ∑
i

[G′ind(ri - re,i) + G′′ind(ri - re,i)
2]qi (17)
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between the electronic states,∆V ) He - Hg,

The oscillations in∆E(t) and inωpeak(t) mostly reflect coherent
motion of the system, manifested in the oscillations of the system
coherences. In the isolated system, the contributions of mode
1 to ωpeak(t) decay faster than those of mode 2 because mode 1
has a broader range of frequencies (due to anharmonicity). But
interaction with the bath causes both modes to dephase faster
with roughly the same rate, leaving a slightly larger oscillation
in mode 1 due to the slightly larger displacement in that mode.
Mode 3 is somewhat less important in both cases because there
is a smaller displacement from the ground state and thus smaller
coherences,Fjk, and smaller matrix elements of∆V.

The rates of both librational population relaxation and
dephasing are determined by the elements of the Redfield tensor
Rjk,lm. Of particular note are the elementsRjj,kk, each of which
gives the population decay rate from statek to statej (there
also is a smaller excitation rateRkk,jj), andRjk,jk, which gives a
rate of dephasing of the coherence between statesj and k
independent of other density matrix elements. These tensor
elements are given in Table 1 for the transitions between the
ground librational state (0) and the first three excited states (1,
2, and 3), which each have one quantum in one mode
(approximately, as the system is not exactly harmonic). All
Redfield tensor elements other thanRjj,kk and Rjk,jk connect
density matrix components that oscillate at different frequencies.
If these relaxation terms (called “nonsecular”) are small
compared to the frequency mismatch, their impact will oscillate
in time, averaging to zero. For the “uncorrelated” parameters
used in Figure 3, the tensor elements between the lowest state
and the first excited state in each mode range from 4.7 to 10.1
ps-1. As illustrated by these examples, when system coordinates
are coupled to independent bath modes, the three modes relax
at rather similar rates.

However, as many tensor elements can contribute to Redfield
relaxation, a single tensor element cannot be taken as a
relaxation rate. Thus, the damping of the signal in Figure 3 is
slower than the elements shown in Table 1 alone might suggest.
The damping is slowed because relaxation processes are often
sequential; e.g., the population in state 4 (doubly excited in mode
1) mostly transfers to state 1 and then to state 0. Coherences
also can grow due to transfer from other coherences, such as
F14 to F01. The effect of such sequential processes is illustrated
in Figure 4, in which the signal from a simulation that includes
only the four lowest vibrational states is shown to decay much
faster than the signal from the full system (in addition to the
smaller initial amplitude of oscillation). In principle, relaxation
between modes, such as that reflected inR11,22andR01,02, could
speed the relaxation of the some modes and slow relaxation of

other modes. For this system, however, such rates are mostly
negligible.

III.B. Correlated and Independent Bath Coordinates.
The signal with independent coupling is compared to the signal
from a system in which all three coordinates are coupled to the
same bath mode (correlated coupling) in Figure 5a. The form
of the correlated system-bath coupling is

Again the coupling strengths and bath relaxation times are
chosen to be the same for all coordinates,G′′/G′ ) 8 rad-1,
and the coupling strength is normalized so thatĖbath) 30 cm-1/
ps. The optical signals for these two cases are somewhat similar
for about 600 fs. After that, a persistent oscillation in mode 2
dominates the signal with correlated coupling. Thus, the form
of the signal is much different, and the decay is much slower
than that in the signal with independent coupling. The slow
damping of mode 2 is consistent with the Redfield tensor
elements (|R02,02| < |R01,01|).

The decay of the system energy, shown in Figure 5b, depends
even more strongly on the coupling form. The figure shows
the actual time-dependent average system energy in the simula-
tions, not to be confused with the hypothetical energy decay
rate used in the normalization. The energy of the system
coupled to independent bath modes decays much faster than
the energy of the system coupled to a single bath mode but
with a more prominent oscillation (corresponding to mode 1).

The system energy evolution is quite different from that of
the optical signal because it depends on different system
properties. While the signal is affected mostly by system
coherences, the system energy at a given time depends only on

TABLE 1: Comparison of the Redfield Tensor Elements for Different Forms of the System-Bath Couplinga

coupling G′ G′′/G′ Ėbath R00,11 R01,01 R00,22 R02,02 R00,33 R03,03

uncorrelated 1.14 8 30 6.19 -10.08 5.08 -9.51 4.74 -9.16
correlated 1 8 30 13.54 -15.66 0.52 -6.97 0.00 -6.57
linear 1.06 0 30 14.13 -15.94 0.58 -6.40 0.00 -6.01
quadratic 5.21 ∞ 30 0.45 -16.48 0.00 -10.80 0.00 -9.52
crossterms 1.08 -8 30 13.64 -16.32 0.59 -6.11 0.00 -5.66
low-temp 1 8 442 19.08 -9.79 0.67 -0.89 0.00 -0.50

a All the couplings except the first are “correlated”. The couplings are normalized as described in section II.B. The lowest tensor elements
representing population relaxation (Rjj,kk) and dephasing (Rjk,jk) are given, roughly corresponding to a single excitation in each of the three system
normal modes.G′ (G′′ for quadratic coupling) values are relative values of the parameters; the other units are rad-1 for G′′/G′, cm-1/ps for Ėbath,
and ps-1 for the tensor elements. See section III for description of the different coupling forms.

Figure 4. Peak frequency of the time-dependent fluorescence spectrum
including only the first four states in the excited manifold compared
to the signal from the full system. This demonstrates the importance
of transfer between coherences.

Vcorr(r ,q) ) [G′corr ∑
i

(ri - re,i) + G′′corr ∑
i

(ri - re,i)
2]q

(19)

ωpeak(t) ≈ ∆E(t) ) ∑
j,k

Fjk(t)〈j|∆V|k〉 (18)
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the librational populations:E ) ∑j Fjj εj. The signal tracks
coherent motion of the system, but energy dissipation includes
loss of incoherent or random thermal energy as well as damping
of coherent motion. Experimentally, vibrational energy loss
rates can sometimes be inferred from the time dependence of
signal oscillations; the oscillations tend to speed up as the system
relaxes to states lower in the potential well (especially in systems
with larger Stokes shifts than ours has).30 Time-resolved Raman
spectroscopy can also probe thermal energy changes in a chosen
vibration. Recent work by Iwata and Hamaguchi: [Iwata, K.;
Hamaguchi, H.J. Phys. Chem. A1997, 101, 632.] monitored
the cooling of the CdC stretch in photoexcited S1 trans-stilbene
using such a “picosecond Raman thermometer” method.

The different energy dissipation rates in Figure 5b illustrate
a significant difference between correlated and independent
coupling. The initial dissipation rate in both cases is very fast,
comparable, when divided by a characteristic librational energy,
to the largest Redfield terms in Table 1 (not surprisingly).
However, within 100 fs the system energies diverge sharply
from each other. Some of the population relaxation rates that
result from correlated coupling are considerably faster than those
from uncorrelated coupling, and some are very slow. TheRjj,kk

terms with correlated coupling in Table 1 vary over 8 orders of
magnitude, while the terms with independent coupling (and the
Rjk,jk dephasing terms) are all of the same order of magnitude.
Hence, with correlated coupling, after most populations are in
equilibrium with each other, a few populations continue to decay
slowly and the energy only slowly reaches its thermal value.

The reason some population relaxation rates that result from
correlated coupling are increased and some greatly suppressed
is because multiple system coordinates are coupled to the same
bath mode. The effects of the different system coordinates on
the bath mode can enhance or cancel each other, manifesting
in a constructive or destructive sum over system coordinates in
the tensor element

Note that G′corr was arbitrarily chosen to be the same for all
system coordinates; different choices would cause different
relaxation rates to be enhanced or suppressed. When the
coupling is uncorrelated, this interference cannot happen; as the
system coordinates are coupled to different modes, the tensor
element is a sum of squares rather than a square of a sum. As
is evident in Table 1, the same kind of interference can occur
with purely linear or purely quadratic coupling. Such interfer-
ence under correlated coupling also affects the damping of the
optical signal, but the effect is less dramatic because many more
terms contribute to theRjk,jk elements. Under the assumptions
used here,Rjk,jk can be written

whereGcorr corresponds to the quantity in square brackets in
eq 20. The interference is unlikely to affect all the terms at
once.

The enhancement or suppression of dissipation due to
constructive or destructive contributions among different system
coordinates is an interesting example of a relaxation process
specific to a multicoordinate system. Enhanced population
relaxation (phonon emission, as from state 1) can be regarded
as the material analogue of the enhanced light emission that
occurs from multiple excited sources in the optical process of
superradiance, and suppressed population relaxation (as from
states 2 and 3) is the analogue of subradiance.31

A second reason for the relative similarity at early times of
the optical signal decay rates with correlated and independent
coupling is that it results from the normalization. The hypo-
thetical dissipation that determines the normalization rate reflects
energy emission to the bath via coherent motion but not
dissipation of incoherent energy; the normalization rate is
proportional to the square of the system vibrational coherences
created by the excitation pulse but does not depend directly on
the populations (see eq 13). Thus, the Stokes shift, which also
depends mostly on system coherence, is fairly well normalized.
But the larger portion of dissipation from this system is
neglected by the normalization. Hence, the simulated dissipation
rates are much greater than the hypothetical rate, and the
simulated rates can vary.

Oscillations in the system energy are due to nonsecular
transfers between populations and coherences. These couplings
are an essential feature of realistic dissipation.32 The prominent
oscillation in the energy for independent system-bath coupling
is due to a fairly large term between theF01 coherence and the
F00 ground librational state population,R00,01 ) 1.96 ps-1.

Figure 5. Comparison of coupling of the three system coordinates to
the same (s) and to independent (- - -) bath coordinates. The system
and the pulses are the same as those in Figure 3. Part a shows the peak
fluorescence frequency, and part b shows the average system energy.
The insets continue the figures to longer times (with a different
horizontal scale).

Rjj ,kk ) (θ+)ωjk

2

p2
[∑

i

G′corr(ri - re,i)jk +

G′′corr((ri - re,i)
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2 (j * k) (20)
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Note also that with independent coupling, the signal oscil-
lations are apparent well after the energy has decayed to very
close to its equilibrium value. In this case, significant coher-
ences remain after population relaxation is nearly complete,
causing coherent motion in a system with nearly thermal
populations. With correlated coupling, incoherent relaxation
continues after the coherent motion has essentially disappeared
(this is clearer with purely quadratic coupling, shown in Figure
6 parts a and b below).

III.C. Linear and Quadratic Coupling. The differences
between relaxation with coupling, linear and quadratic, in the
system coordinates are even more dramatic. In Figure 6a the
signals with purely linear coupling and with purely quadratic
coupling are compared for coupling to a single bath coordinate
(again the subsystem and pulses are the same as in Figure 3).
Both signals are normalized as described in section II.B. The
quadratic coupling causes much faster decay in the oscillations
of the fluorescence signal than does linear coupling. The
difference between the effects of linear and quadratic coupling
is simplest in harmonic systems, in which quadratic coupling
causes pure dephasing but does not cause population relaxation
between adjacent levels. As the system here is not highly
excited, it is fairly close to harmonic. Since the fluorescence
frequency is mostly determined by the average configuration
of the system, with motion arising mostly from system libra-
tional coherences, the signal oscillations are effectively damped
by pure dephasing due to quadratic coupling. Energy dissipation
and the normalization, on the other hand, are primarily due to
the elements of the couplingGa(r ) that cause population
relaxation between adjacent levels and therefore are sensitive

to linear coupling. Because of the normalization, the quadratic
coupling is relatively strong and the resultant optical signal
decays very quickly. Although the dominant frequency is the
same with linear and quadratic coupling, there is a small phase
shift due most likely to the different damping rates.

The energy decay is well normalized for the first 100 fs
(Figure 6b). Afterward, the energy with quadratic coupling
decays more quickly than the energy with linear coupling even
though the Redfield tensor population relaxation elements in
Table 1 are much smaller. Although quadratic coupling does
not couple adjacent states in a harmonic mode, it does couple
statesj with j ( 2. The first excited state in each mode has no
state j - 2 to couple to and thus decays slowly, but the
normalized coupling between many of the higher-lying states
is relatively strong and causes faster relaxation. The energy
decay with quadratic coupling is very smooth because the
coherences dephase so quickly. The energy oscillation with
linear coupling reflects continued coherence in mode 2.

Comparison of the signals forG′′/G′ ) 8 and-8 rad-1, with
different sign of the quadratic coupling relative to the linear
coupling (both to a single bath mode), highlights the effects of
the crossterms of linear and quadratic coupling in the Redfield
tensor. For a harmonic system, these crossterms would couple
populations to coherences and coherences to each other; all these
terms in the Redfield tensor would be neglected under a secular
approximation. The relative sign of the linear and quadratic
coupling and hence their crossterms does have a small effect
on the fluorescence signals and system energies in Figure 7.
The signal oscillation in mode 2 is slightly less damped with
G′′/G′ ) -8. However, the energy decays somewhat faster.

Figure 6. Comparison of the effects of correlated coupling, linear and
quadratic, in the system coordinates. Peak fluorescence frequency for
the pulses and system of Figure 3 with purely linear coupling (s) and
purely quadratic coupling (- - -). Part a shows the peak fluorescence
frequency, and part b shows the average system energy.

Figure 7. Demonstration of the importance of linear and quadratic
crossterms. Comparison of the peak fluorescence frequency (a) and
the average system energy (b) for the pulses and system of Figure 3,
with G′′/G′ ) -8 (s) andG′′/G′ ) 8 (- - -).
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The individual Redfield tensor elements, particularly the non-
secular terms, can differ in the two cases by a factor of 2 or
more (though the terms in Table 1 are quite similar).

III.D. Temperature Dependence. The temperature depen-
dence of the dissipation combines several different factors. At
low temperature, the system is more coherent (the coherences
between vibrational states in the electronically excited compo-
nent of the density matrix are larger) because fewer vibrational
states of the ground electronic manifold are populated in the
initial thermal distribution. Fewer and lower states in the excited
manifold are populated as well (both initially and at final
equilibrium). Temperature also affects the frequency depen-
dence ofθ+ andR′′ through the temperature dependence of the
bath correlation functions. Because of detailed balance, the
magnitude of terms that cause downward transitions in the
simulations and in the normalization increases with decreasing
temperature (see eq 9 withω < 0 and eq 12); upward transitions
are shut off. This effect is most pronounced for frequencies
comparable to the temperature (208.5 cm-1 at room tempera-
ture). There is an additional temperature dependence: the bath
fluctuations〈qa

2〉 shrink with decreasing temperature. Since in
Redfield theory the relaxation is proportional to the equilibrium
fluctuations of the bath, this effect would decrease dissipation
at low temperature. The size of this effect would depend on
the exact nature of the bath, which we have avoided specifying.
Thus, we neglect the temperature dependence of the bath
fluctuations; as the temperature drops to become much smaller
than the frequencies of bath modes resonant with system
transitions, zero-point motion would make this dependence
vanish anyway.

The signal with correlated coupling for a system and bath at
10 K is compared to the signal for system and bath at 300 K in
Figure 8a. The coupling isnot renormalized; the normaliza-
tion-dissipation rate at 10 K is 442 cm-1/ps. The normalization
rate is strongly increased at low temperature, mostly because it
is proportional to the squares of the larger coherences (see eq
13). Despite the greater initial coherence at low temperature,
the peak frequency traces are quite similar. The width of the
fluorescence spectrum (not shown) is narrower at low temper-
ature. The signal at longer times (in the inset) is damped
somewhat more slowly at 10 K. Damping is slower because
dephasing of states low in the manifold is generally slowed at
low temperature, as can be seen in Table 1. The dephasing of
these states is slowed because population transfer to higher-
energy states is shut off at low temperature; in eq 21 theRmm,jj

andRmm,kkcontributions withm > j,k become small. The final
values of the peak frequency are different because the average
coordinates depend on temperature in this anharmonic system.

The energy dissipation at 10 K is compared to that at 300 K
in Figure 8b. In each case, the energy is plotted relative to its
value at thermal equilibrium. The initial superthermal energy
is roughly the Franck-Condon energy in the excited electronic
state and hence varies little with temperature. It is slightly lower
at room temperature because of the finite excitation pulse
duration.33 At early times, energy dissipates more quickly from
the low-temperature system despite the similarity of the super-
thermal energies. Interactions with a low-temperature bath are
more likely to relax the system and less likely to excite it,
reflected in larger population relaxation elements in Table 1
and smaller excitation elements at low temperature. But the
excited populations are smaller at low temperature, slowing
relaxation and counteracting the effect of the larger Redfield
elements in eq 3. The net result for a linearly displaced
harmonic oscillator (and energy relaxation is due primarily to

linear coupling with the parameters used here) under the secular
approximation is exponential decay of the superthermal energy
at the rate:Γ ) τ〈q2〉m-1G′2〈He〉e

-1 ) τ〈q2〉m-1G′22(pω)-1 ×
tanh(âpω/2) (compare eqs 25, 50, and B8 in the second
reference in ref 32); the inverse proportionality of the rate to
the thermal energy〈He〉e is similar to what is found in our
simulation. After about 200 fs, the rate of energy loss slows,
becoming slightly slower than that at 300 K. In both cases,
after most populations reach equilibrium with each other, the
rate of the remaining dissipation is limited by the slowest
relaxation rates (recall that with correlated coupling there is a
wide variety of population relaxation rates). The long-time
dissipation rate will be somewhat temperature dependent because
at low temperature the widely varying relaxation rates are
averaged over fewer states.

IV. Concluding Remarks

Redfield and other relaxation theories are usually applied to
either a single system coordinate (often harmonic) or a two-
state system. The system is typically coupled to a parametrized,
fast-decaying bath. If multiple system coordinates are needed,
they are generally uncorrelated and each coupled to a separate
bath. Yet optical experiments often induce motion in multiple,
coupled coordinates that interact with the same solvent mol-
ecules. This paper is a first step toward simulating the relaxation
of more complicated models. While we too assume a param-
etrized, fast-decaying bath, our model system has three coupled,

Figure 8. Effects of relaxation at low temperature. The peak
fluorescence frequency (a) and system energy (b) for the system and
bath at 10 K (s) are compared to the signal from the system at 300 K
(- - -). Pulse parameters are the same as those in Figure 3. The
temperature dependence of the bath fluctuation amplitude is neglected
(see text). Note the shifted energy scales in Figure 8bsthe bottom of
the figure in each case is the thermal energy at that temperature.
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anharmonic coordinates, and we explore several different forms
of coupling to the bath.

Some relaxation phenomena can only occur with multiple
system coordinates. Most simply, when different modes relax
at different rates, the optical signal can be smoothed quickly
but show only slow decay of the amplitude of a remaining
oscillation. Widely different relaxation rates are most likely
for system coordinates that are coupled to the same (or to
correlated) bath modes; the combined influence can augment
or shut off relaxation pathways. Thus, if multiple system
coordinates in a normal mode drive the same bath mode in
opposite directions, little energy will dissipate into that bath
mode. Similar interference could occur in reverse if multiple
bath coordinates are coupled to a single system mode; it would
be manifested in larger or smaller correlation functions and
values of (θab

+ )ω. As noted earlier, these effects are material
analogues to super- and subradiance. When the system modes
are coupled to each other, another phenomenon can occur;
transfer between modes can depopulate states excited in one
mode and slow relaxation in another mode. But this process
was less important in our model system.

Our results also confirm the importance of processes other
than simple dephasing and population relaxation, including
“nonsecular” (oscillating) processes. Although individual Red-
field tensor elements are useful for comparing different coupling
forms, they are often very different from the actual energy
dissipation and signal damping rates, especially due to “cascad-
ing” populations and transfer of coherence. The system energy
often shows prominent oscillations due to coupling between
populations and coherences. These couplings also affect the
optical signal somewhat.

The time-resolved fluorescence Stokes shift is a specific probe
of some types of relaxation. It is sensitive primarily to coherent
motion of the system and is damped by dephasing. In contrast,
energy dissipation, for which the Stokes shift is sometimes
misconstrued to be an experimental measure, is due to popula-
tion relaxation. In our model system at room temperature,
population relaxation is mostly incoherent emission unrelated
to system coherence. Thus, depending on the system-bath
coupling form and the consequent relaxation rates, the signal
can continue to oscillate when there is little superthermal energy
left in the system or can be damped long before dissipation is
complete. The fluorescence dynamics from an anharmonic
system is damped by a variety of system-bath couplings, but
the form of the coupling can affect the overall damping rate,
the relative rate of damping of oscillations at different frequen-
cies, and other details of the signal. This sensitivity likely would
be washed out in typical overdamped solvation Stokes shift
measurements, allowing simulation by a variety of coupling
forms that may or may not correspond to the real system
(although weak coupling approaches may not relax the system
fast enough). But the difference between dissipation and
coherence loss could be significant even in an overdamped
system.

Our results have relevance for other approaches that have
been used to simulate the relaxation of multimode systems. In
particular, the multimode Brownian oscillator has been suc-
cessfully applied to fit a variety of optical signals.34-38 In this
model, one or more displaced harmonic oscillators are each
coupled to an independent bath. Usually the system and bath
are both phenomenological (parametrized) and cannot easily be
associated with specific molecular motions. For the specific
case of a single displaced harmonic mode linearly coupled to
an instantaneously relaxing bath, with adiabatic evolution, the

Brownian oscillator model has been shown to be equivalent to
Redfield relaxation.32

The assumption of independent relaxation of each system
mode is somewhat different in general from our “uncorrelated”
coupling case, in which the relaxation of eachlocal system
coordinate is independent. It is not clear why collective system
modes made up of different motions of the same system atoms
should be coupled to entirely independent bath modes. Un-
correlated relaxation of localized coordinates seems more
plausible. Independent modes do not allow the transfer of
energy between modes, which could be significant in anhar-
monic systems. However, independent modes with individually
chosen relaxation rates could incorporate some of the interfer-
ence effects described in section III.B.

The combination of harmonic system modes with linear
coupling neglects pure dephasing. Such an approximation is
particularly severe in simulating an optical signal such as
fluorescence that is strongly affected by dephasing. Displaced
harmonic modes without Duschinsky rotation or frequency
changes also result in the wrong initial density matrix in the
excited electronic state; if the model is based on the ground
electronic state, the frequencies of motion could be wrong as
well (note the different frequencies in the two states in our model
system). On the other hand, the assumption of displaced
harmonic modes in the multimode Brownian oscillator model
allows strong coupling to a bath and hence enables simulation
of overdamped modes. The limitations of the model may be
less important in treating overdamped modes because of the
lack of information in the fast-decaying dynamics.

For more slowly damped systems another method appears
possible, if not easy. A few collective coordinates coupled to
the electronic state and to each other could be picked out of the
model of a solution to form the subsystem.17 The system-
bath coupling would be known from the full potential. The
bath correlation functions could be estimated from classical
simulation. This approach would allow simulation of a real
solution (as real as the potential surface) instead of a set of
parameters describing relaxation,39 but it also would be restricted
by the actual potential. Convenient assumptions such as weak
coupling and Markovian separation of time scales would have
to be justified or avoided rather than built in. How large the
system would have to be to enable these approximations for
the rest of a realistic bath remains an open question.
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